Continuous Piped Water or Improved Intermittency? Willingness to Pay for Piped Water Services in Hubli-Dharwad, India

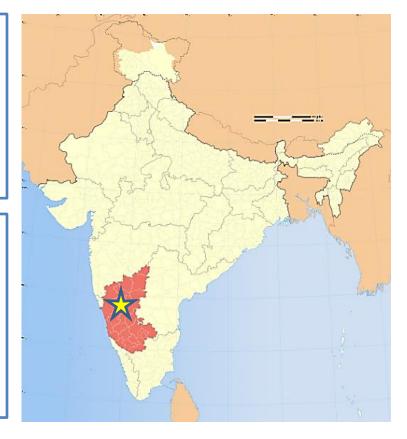
By Zachary Burt, Mollie Van Gordon and Akshay Vij

Research Questions

- 1. Are water users willing to pay for incremental improvement in water services?
 - If so, how much?

- 2. Does experience with service improvements change WTP?
 - If so, by how much?

Study Location


Hubli-Dharwad

- Mid-size city
- Increasing urbanization

Population: Annual GNI per cap: 943,185¹ US\$ 776²

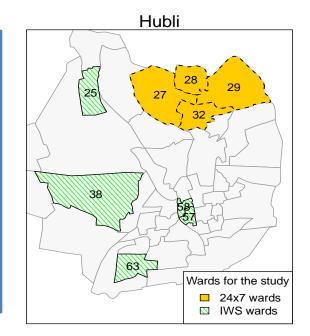
Piped water access (2006):

once in 3-4 days³

1 Gov of India Census 2 Gov of Karnataka 3 (CMDR 2006)

Pilot Project: Continuous Piped Water

<u>Pilot Project Zones</u> 8 Wards (10% of all residents) Mix of low, middle, high income


<u>Service Changes</u> Continuous piped water Full metering Higher tariff Removal of public borewells

=> Planned full scale-up in near future

Sampling Method

- Genetic matching of wards¹
- Household survey data (2006) used for matching²
- Cases had continuous piped water for 3 years at time of survey

	Continuous Water Service (CWS)	Intermittent Water Service (IWS)
Households	1418	1525
Sample Size	4571	4253

1 (2009) Sekhon

2 (2006) Center for Multi-Disciplinary Research, Dharwad

Survey Instrument

Stated Preference Discrete Choice Unlabeled Alternatives

Attributes and Levels

<u>Prices (₹ per 1000 liters):</u> ₹ 0.01, ₹ 0.10, ₹ 0.15, ₹ 0.25, ₹ 0.50, ₹ 0.99

Frequency + Duration:

24hrs / 7days	
5hrs / 2days	5hrs / 5days
2hrs / 2days	2hrs / 5days

Punctuality of Delivery

(Yes = 1, No = 0)

 $\frac{\text{Borewell Access}}{(\text{Yes} = 1, \text{No} = 0)}$

<u>Water Quality</u> (Good = 1, Bad = 0)

Model Estimation

- Mixed Logit Discrete Choice (Randomized Utility Model)
- Estimated coefficients for all five attributes (Punctuality, Water Quality, Borewell Access, Frequency of Delivery, Tariff)
- Differentiated by household characteristics:
 - Above or Below Median Wealth (AMW or BMW)
 - Currently receiving CWS or IWS
 - Estimated Usage per month

Supplemental Borewell Access

	Value	p-value
BMW	-0.0755	0.27
sigma (BMW)	1.08	< 0.01
AMW	-0.00777	0.87

- AMW households don't seem to value borewell access
- BMW households spread around zero
 - ⇒ some BMW households value having access and others value taking it out
 - \Rightarrow WTP for borewell access was not calculated

	WTP (Rs. P	er Month)
	BMW	AMW
Median Monthly Usage (Kiloliters)	5	9.5
Water delivered exactly on time	22	122
Improved Water Quality (IWS)	30	93
Maintaining Water Quality (CWS)	-36	-114
Continuous Water Access (IWS)	28	89
Continuous Water Access (CWS)	141	442
5 hours delivered once every 5 days	45	142
2 hours delivered once every 2 days	48	151
5 hours delivered once every 2 days	79	247

	WTP (Rs.	Per Month)
	BMW	AMW
Median Monthly Usage (Kiloliters)	5	9.5
Water delivered exactly on time	22	122
Improved Water Quality (IWS)	30	93
Maintaining Water Quality (CWS)	-36	-114
Continuous Water Access (IWS)	28	89
Continuous Water Access (CWS)	141	442
5 hours delivered once every 5 days	s 45	142
2 hours delivered once every 2 days	48	151
5 hours delivered once every 2 days	5 79	247

Phrasing of Water Quality Attributes

CWS	IWS
Your water quality is the same	Your water quality is the same
as it was before CWS water	as you are currently receiving
began	
Your water quality is the same	Your water quality is better
as you are currently receiving	than the water you are
	currently receiving

In CWS areas how do they judge what is improved water quality? ⇒ By appearance, taste and smell

	WTP (Rs.	Per Month)
	BMW	AMW
Median Monthly Usage (Kiloliters)	5	9.5
Water delivered exactly on time	22	122
Improved Water Quality (IWS)	30	93
Maintaining Water Quality (CWS)	-36	-114
Continuous Water Access (IWS)	28	89
Continuous Water Access (CWS)	141	442
5 hours delivered once every 5 days	s 45	142
2 hours delivered once every 2 days	48	151
5 hours delivered once every 2 days	5 79	247

	WTP (Rs.	Per Month)
	BMW	AMW
Median Monthly Usage (Kiloliters)	5	9.5
Water delivered exactly on time	22	122
Improved Water Quality (IWS)	30	93
Maintaining Water Quality (CWS)	-36	-114
Continuous Water Access (IWS)	28	89
Continuous Water Access (CWS)	141	442
5 hours delivered once every 5 days	s 45	142
2 hours delivered once every 2 days	48	151
5 hours delivered once every 2 days	5 79	247

Under-Valuing Convenience

WTP for continuous water:

- Increased access
- Increased convenience
- Decrease of other 'coping costs'
- ⇒Represents a trade-off between time (convenience) and money (tariffs)

WTP for continuous water in CWS >> than in IWS ⇒convenience is undervalued when not experienced

Conclusions

Water users have a positive WTP for:

- Incremental improvements in frequency, duration and punctuality of deliveries
- Water quality improvements might be complicated by taste preferences
- Experience has a large, positive effect on WTP for continuous water service

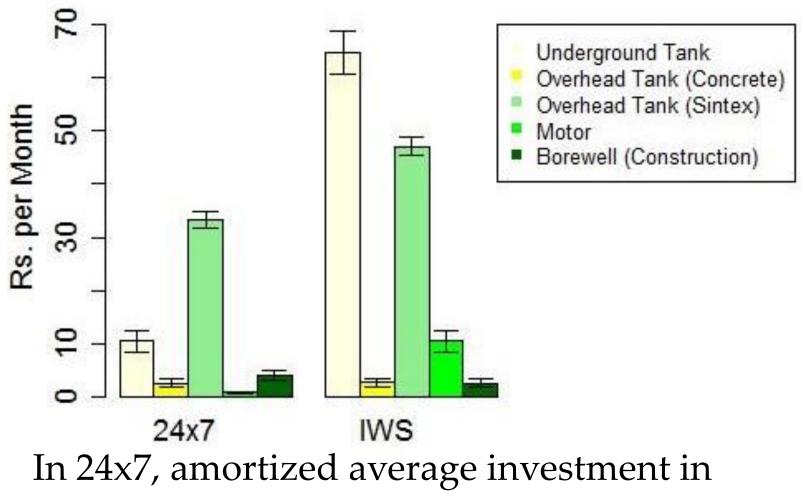
Isha Ray Joan Walker Kara Nelson Ayse Ercumen Emily Kumpel Narayan Billava Nayanatara Nayak

The Blum Center for Developing Economies

Center for Multi-Disciplinary

Research, Dharwad

Center for South Asian Studies, UC Berkeley


Thank You

Study Balance

Average Characteristics	24x7	IWS
Persons per household	6.5	6.5
Children <5 yrs per household	1.4	1.4
Age of primary caregiver	27	27
Rooms in household	2	2
% with pakka roof	44%	45%
% with illiterate mother	9%	10%
% of Hindu households	73%	66%

Savings from Reduced Investment

equipment is ₹ 97 / month less than in IWS

Estimated Model

 $V_{ii} = Punctuality^*(\theta_1^*BMW + \theta_2^*AMW) +$ WaterQuality*(β_3 *IWS + β_4 *CWS) + ContinuousWater*(β_5 *IWS + β_6 *CWS) + θ_7 *FREQ5_DUR5 + β_{s} *FREQ2 DUR2 + β_{q} *FREQ2_DUR5 + Borewell*($\beta_{10}AMW + (\beta_{11} + \sigma_1^*\mu)*BMW) +$ $Tariff^*(\theta_{12}^*BMW + \theta_{13}^*AMW + \theta_{12}^*USE100)$

Name	Value	p-value
Punctual (BMW)	0.087	0.13
Punctual (AMW)	0.151	< 0.01
Improved Water quality (IWS)	0.115	0.01
Maintain water quality (CWS)	-0.141	< 0.01
24hrs/7days (IWS)	0.11	< 0.01
24 hrs/7days (CWS)	0.545	0.17
5 hrs / 5 days	0.175	< 0.01
2 hrs / 2 days	0.186	< 0.01
5 hrs / 2 days	0.304	< 0.01
Supplemental Borewell (BMW)	-0.0755	0.27
sigma (BMW)	1.08	< 0.01
Supplemental Borewell (AMW)	-0.00777	0.87
Tariff (BMW)	-0.0177	< 0.01
Tariff (AMW)	-0.00859	< 0.01
Tariff (Usage per month)	-0.0329	<0.01

Summary Statistics	
Sample size:	8824
Final log-likelihood:	-5672.521
Rho bar:	0.07